

LITTLE SURVEY

Do you actually care?

» How big is your organisation?

» Do you “measure” your technical debt?
» What kind of legacy code you have?

» Do you know what to refactor?

> s it easy to prioritise refactorings?

» How do you know that things have actually improved after a
refactoring effort?

» Do you have any bottlenecks when multiple developers/teams need
to work on the same part of the codebase?

» How do you know which parts of the codebase you should focus on
during an off-boarding of a core developer?

WHAT IS TECHNICAL DEBT

And why you should care...

TECHNICAL DEBT

“Stuff that isn’t supposed to be there and is in the way of the
stuff that is supposed to be there.”

— Building Evolutionary Architectures (p. 110), by Neal Ford,
Rebecca Parsons, and Patrick Kia

LEHMAN

Lehman’s “Laws” of Software Evolution

Continuing Change

“a system must be continually adapted or it
becomes progressively less satisfactory”

Increasing Complexity

“as a system evolves, its complexity increases unless
work is done to maintain or reduce it”

COMPLEXITY KILLS DEVELOPMENT SPEED

“It's my contention, based on
experience, that if you ignore
complexity, you will slow down.
You will invariably slow down over
the long haul

... the complexity will eventually
kill you. It will kill you in a way
that will make every sprint

accomplish less.
— Rich Hickey, Simple Made Easy

TECHNICAL DEBT HAS IMPACT ON BUSINESS & PRODUCT

00

Long Lead Times
Lack of Predictability

CONVENTIONAL TOOLS

hat’s missing?

Lines of code

162,306 4

325,036 lines &

87,758 statements A
1,060 files

Comments

26.6%

58,891 lines &

59.1% docu. API

5,418 undocu. API
1,164 commented LOCs

Complexity

Classes
1,447
103 packages

14,271 methods »
+1,262 accessors

Duplications

22,998 lines ¥
566 blocks #
174 files *

ACTIONABLE?

10000
3.1 / method

30.9 / class o

42.2 ifie A e ETIT
Total: 44,773 (® Methods () Classes
Events | Al B

2010-07-26 Version 6.x

2009-06-07 Version 6.0.x

2009-02-15 Alert Orange (@)

Key : org.apache:tomcat

Language : java
Alerts feed

Rules compliance Violations
83.7% 10,072 »
Usa. A\ Blocker 0
Rel. 2 Critical 0
¥ Minor 65
Por. v Info 1,213 1
Mai.

A Alerts : Duplicated lines (%) > 5.

SIG Maintain. Model &

(A)nalysability -
(C)hangeability 0
(S)tability -
(T)estability -

Technical Debt &

11.0%

$ 341,563 &
683 man days A

FIXME——

TODO
@todo d@deprecate

Duplication——=

. omments
COH]DIEXII'AjC

No information available on coverage

~—Violations

No information available on design

source: http://www.austinjug.org/presentations/HeintzTechnicalDebtSonar.pdf

http://www.austinjug.org/presentations/HeintzTechnicalDebtSonar.pdf

THOUSANDS OF YEARS OF TECHNICAL DEBT

» Where do you start when you want to pay it back?

o v - W T e = e N~ T T

CODESCENE

It’s a “movie” rather than a “snapshot”

... Static analysis will never be able to tell you if that excess code
complexity actually matters — just because a piece of code is complex
doesn't mean its a problem.

CodeScene identifies and prioritizes technical debt based on how the
organization works with the code

— How CodeScene Differs From Traditional Code Analysis Tools

+ Time aspect

+ Organization & people

https://www.empear.com/blog/code-analysis-tool/

EntityFranework/src/EFCore. Specification. Tests/Query/

I QueryTestBase.cs

ComplexNavigationsQuerySqlServerTest.cs

EntityFramework/test/EFCore. SqiServer. FunctionalTests/Query/

GearsOfWarQuerySqlServerTest.cs
y test/EFCore. SqlServer.

Tests/Query/
EntityQueryModelVisitor.cs

EntityFranework/src/EFCore/OQuery/

RelationalQueryModelVisitor.cs
EntityFranework/src/EFCore. Relaticnal/Ouery/

Visualizations, priorities, and predictive analytics

® Feature

® By
® Must Have Feature
@ Improvement

e
%
n
n
L
“
“
n
L]
May Jun Jul Aug Sep Oct Mov Dec e Fed Mar Apor Wiy Jun
Duration per Work Type (Hours / Month)

N1 Aw Oct Nov

O

Code, Process, and Evolutionary Metrics

Source Code

it

kVersion-ControI Data)

Engage Jupiter Express for
outer solar system travel

SPACE TRAVEL PARTNERS
Bas rsx@

Create 90 day plans for all
departments in the Mars Office

LOCAL MARS OFFICE

Project Management Tools, e.g. JIRA

Requesting available flights
is now taking > 5 seconds

SEESPACEEZ PLUS

OA s He-s @

Engage Saturn Shuttle Lines
for group tours

SPACE TRAVEL PARTNERS

Homepa
inline sty

aAa

Engage
SpaceW

SPACETI

HOTSPOTS

Return On Investment

HOT-WHAT?

A hotspot is a complicated code that you have to work with often.

Principal

LPO O OO \Homt

Code Complexity

A o0 @

Interest Rate| | o chenae Freauensy

-

React]JS

o
-
&=
)
©

HOTSPOTS ARE ALSO COMMON SOURCES OF BUGS

Predicting Fault Incidence Using Software Change History

Article (PDF Available) in |EEE Transactions on Software Engineering 26(7):653 - 661 - August 2000 with 420 Reads @
DOI: 10.1109/32.859533 - Source: IEEE Xplore
, Cite this publication

- Alan F. Karr
|| ToddL.Graves e 1127.09 - RTI International

= Harvey Siy
~[] J.5.Marron . 11 19.18 - University of Nebraska at Omaha

> In general, process measures based on the change history are more useful in predicting fault
rates than product metrics of the code: For instance, the number of times code has been
changed is a better indication of how many faults it will contain than is its length.

> We also compare the fault rates of code of various ages, finding that if a module is, on the
average, a year older than an otherwise similar module, the older module will have
roughly a third fewer faults. Our most successful model measures the fault potential of
a module as the sum of contributions from all of the times the module has been changed,
with large, recent changes receiving the most weight

WORRISOME TRENDS

000

TypeScript TypeScript SIc
compiler checker.ts

transfof Size 25774 Lines of
Code

Change 785 Commits

Frequency
- commandLineParser.ts Main Anders
Complexity Trend ,
43 Click on a point to diff the code changes. AUthor HeJISberg (26
Complexity (ws) , %)
130,000 Complexity
120,000+
Knowledge 0%
Loss Abandoned
80,000 COde
Defects 1051 (133 %
Bug Fixes)
o [P) mnnthe ann

I | | | | | I | I | | I I I | I | I |
October2015 April Julv October2016 April Julvy October2017 April Julvy October2018 April Julv October2019 April

Deep dive

spots Refactoring Costs Defects Programming
Targets Language

|' legacy

| |
II\\ y

\ / index.js
~—— console.js
utils.js
. ‘:‘. ":
‘NativeStyleEditor

X-RAY

react react packages
react-devtools-shared src
backend renderer.js

Code
Size 2444 Lines of = Health
Code 5
Change 167 Commits
Frequency
Main Brian Vaughn
Author (85 %)
Knowledge 0%
Loss Abandoned
Code
Defects 34 (20 % Bug
Fixes)
Last 0 months ago
Modified
Actions
View Code X-Ray
Trends Code Review | ~

Complexity Trend

I] 1
April July October

e @ @ 0 O 0 0 0 0 0 0 0 O 0 06 0 0 O O O O O O 0 O 0 O O 0 O O 0 0O 0 O 0 0O 0 0 0 0 o

We’ve identified a problematic

file but it’s still huge!

Let’s X-Ray it to find the most

problematic functions.

- X-Ray Results

Hotspots

Hotspots

Structural Recommendations

Internal Temporal Coupling

Change Frequency Distribution

react/packages/react-devtools-shared/src/backend/renderer.js

External Temporal Coupling

External Temporal Coupling Details

Change Lines of Cyclomatic Overloaded

% Function Frequency < Code =< Complexity < Functions?
attach (top-level context) 103 109 9 1 I
attach.recordMount 37 48 8 1 I
attach.handleCommitFiberRoot 32 89 1 I
attach.flushPendingEvents 30 105 1 I
attach.inspectElement 30 93 1 I
attach.flushInitialOperations 29 51 1 I
attach.updateFiberRecursively 24 220 1 I
attach.inspectElementRaw 24 180 1 I
attach.recordUnmount 18 50 1 I

CommitTreeBuilder.js
updateTree.switch

X-RAY

CHANGE
COUPLING

LEGAC

And why technical debt 1sn’t just technical

LEGACY CODE

» Legacy code is typically used to describe the code that:
» lacks in quality (relative perspective)

» we didn’t write ourselves

The Technical Debt That Wasn’t

Product #1 Product #2 Product #3

s

?

&

HOW QUICKLY CAN YOU TURN YOUR CODEBASE INTO LEGACY CODE?

Simulate the effects of a planned off-boarding if some developers leave your organization

Developers
Legend a
Select one or more developers to
© Knowledge simulate their departure from yot
® Current Loss organization.
2 ® Simulated Loss
@ Off-Boarding Risk Filter developer names:
O Inconclusive brian X
/0 |) Brian Vaughn
Directory: react
& react

AFTER THEY LEAVE ...

Simulate the effects of a planned off-boarding if some developers leave your organization

Simulated offboarded
Legend authors
© Knowledge | Brian Vaughn
® Current Loss
2 ® Simulated Loss
@ Off-Boarding Risk Developers

5 .
Inconclusive Select one or more developers to

simulate their departure from you
/O organization.

Directory: react

Fllter developer names:

| @ Brian vaughn

ON CODE REVIEWS

... and what to focus on

CODESCENE DELTA ANALYSIS (JENKINS)

& —~ Afailed Quality Gate (QG) ORIGIN/REFACTOR

/

Failed Quality Gate: a goal defined in CodeScene is violated. Check the details below.

The change is high risk and adds 87 lines, deletes 99 lines of code in 8 files. The risk is lower since it's a very
contributions.

CODE OWNERS: @adam, @TheTechLead, @TheArchitect

COMMITS

. €96ed525f55438c0789c91dfaf3a76d04d963ef3 ..and an explanation on the
« d6afb50275dbc377ab86c5e75c8ac5340385£779
. dl1424f85a09efd8817cf9d1d932ea5f0cac94blb
. b49d570316feb3a3067ee07973eb1591f455e318

VIOLATES GOALS

« Hotspots marked "supervise", launch control.c, degrades from a Code Health of 8.2 -> 7.0

CODE HEALTH DELTA DESCRIPTIONS

launch control.c

e Improvements: -
e Degradations: Brain Method - getting worse, Deep, Nested Complexity - new issue

r-

PR COMMENTS

Risk
Quality Gates
Description

Commits

Warnings

Improvements

Code Health
Delta
Descriptions:

CodeScene Delta Analysis Results
5
Fail
The risk is somewhat lower due to an experienced author.
7d0c1c5b2a786b231538¢79257499f0b5adfd8ac

Modifies Hotspot
e test-aspnet-mvc-
repo/test/Microsoft.AspNetCore.Mvc.ViewFeatures.Test/ViewComponentRe

Complexity Trend Warning
e test-aspnet-mvc-
repo/test/Microsoft. AspNetCore.Mvc.Core.Test/Internal/ControllerActioninv

Degrades in Code Health
» DefaultViewComponentHelperTest.cs degrades from a Code Health of 10.0

* ViewComponentResultTest.cs degrades from a Code Health of 9.3 -> 9.0
« ControllerActioninvokerTest.cs degrades from a Code Health of 5.0 -> 4.7

ViewComponentDescriptor.cs improves its Code Health from 8.3 -> 10.0

DefaultViewComponentHelperTest.cs
« Degradations:
o Duplicated Assertion Blocks - new issue

o High Degree of Code Duplication - new issue

ViewComponentResultTest.cs
e Improvements:
o String Heavy Function Arguments - no longer an issue

o Constructor Over-Injection - no longer an issue

« Degradations:
o Similar Code in Multiple Functions - new issue

ControllerActioninvokerTest.cs
* Degradations:
o Constructor Over-Injection - new issue

o Primitive Obsession - new issue

AND MORE

Always keep exploring

THERE'S MUCH MORE IN CODESCENE

» Change coupling
» Microservices
» Shotgun surgery
» Team conflicts
» Technical sprawl
» Proactive warnings
» Retrospectives
» Delivery Performance

» Branch Analyses

T0 CONCLUDE. ..

» Technical debt is a real
problem regardless of
programming language

» There’s a huge amount of
useful information stored in
your version control system

» Ultimately, you need to rely on
human expertise

» Support your developer’s
judgment and experience with
data to get the highest ROI

RESOURCES

Where to learn more

» codescene.io

» codescene.io/showcase (React, ASPNET, Rails, ...)

» CodeScene blog: https://www.empear.com/blog/

» How CodeScene Differs From Traditional Code Analysis Tools

» Adam Tornhill - Talk Session: Prioritizing Technical Debt as if
Time and Money Matters

» Software Design X-Rays (the book)

» Predicting Fault Incidence Using Software Change History

» Simple Made Easy

» Elements of Clojure

http://codescene.io
https://codescene.io/showcase
http://ASP.NET
https://www.empear.com/blog/
https://www.empear.com/blog/code-analysis-tool/
https://www.youtube.com/watch?v=KV75YcFoWTo&feature=youtu.be&t=1215
https://www.youtube.com/watch?v=KV75YcFoWTo&feature=youtu.be&t=1215
https://pragprog.com/book/atevol/software-design-x-rays
https://www.researchgate.net/publication/3188092_Predicting_Fault_Incidence_Using_Software_Change_History
https://www.infoq.com/presentations/Simple-Made-Easy/
https://leanpub.com/elementsofclojure

APPENDINX

ALAN PERLIS

I think that it's extraordinarily important that we in computer science
keep fun in computing. When it started out, it was an awful lot of fun. Of
course, the paying customers got shafted every now and then, and after a
while we began to take their complaints seriously. We began to feel as if we
really were responsible for the successful, error-free perfect use of
these machines. | don't think we are. | think we're responsible for
stretching them, setting them off in new directions, and keeping fun in the
house. | hope the field of computer science never loses its sense of fun.
Above all, I hope we don't become missionaries. Don't feel as if you're
Bible salesmen. The world has too many of those already. What you know
about computing other people will learn. Don't feel as if the key to successful
computing Is only in your hands. What's in your hands, | think and hope, is
intelligence: the ability to see the machine as more than when you were first
led up to it, that you can make it more.
- Quoted in The Structure and Interpretation of Computer Programs by Hal
Abelson, Gerald Jay Sussman and Julie Sussman (McGraw-Hill, 2nd
edition, 1996)

WHY CODE-SCENE?

e (int

r 07 1)

Your Code as a
Crime Scene

Use Forensic Techniques
to Arrest Defects, Bottlenecks, and
Bad Design in Your Programs

i ﬁo; ¢ loe! ‘)
turn rolJ; : ' r"(") ‘bu‘(l).

wiiBe

Cres, [e, "85,
= checth'nh

blic vo!

{n
 §

Michael Feathers

