
BEYOND TECHNICAL DEBT
(CodeScene)

LITTLE SURVEY
Do you actually care?

Q&A
➤ How big is your organisation?

➤ Do you “measure” your technical debt?

➤ What kind of legacy code you have?

➤ Do you know what to refactor?

➤ Is it easy to prioritise refactorings?

➤ How do you know that things have actually improved after a
refactoring effort?

➤ Do you have any bottlenecks when multiple developers/teams need
to work on the same part of the codebase?

➤ How do you know which parts of the codebase you should focus on
during an off-boarding of a core developer?

WHAT IS TECHNICAL DEBT
And why you should care…

TECHNICAL DEBT

“Stuff that isn’t supposed to be there and is in the way of the
stuff that is supposed to be there.”

— Building Evolutionary Architectures (p. 110), by Neal Ford,
Rebecca Parsons, and Patrick Kia

LEHMAN

COMPLEXITY KILLS DEVELOPMENT SPEED

“It's my contention, based on
experience, that if you ignore
complexity, you will slow down.
You will invariably slow down over
the long haul
… the complexity will eventually
kill you. It will kill you in a way
that will make every sprint
accomplish less.
— Rich Hickey, Simple Made Easy

TECHNICAL DEBT HAS IMPACT ON BUSINESS & PRODUCT

CONVENTIONAL TOOLS
What’s missing?

ACTIONABLE?

source: http://www.austinjug.org/presentations/HeintzTechnicalDebtSonar.pdf

http://www.austinjug.org/presentations/HeintzTechnicalDebtSonar.pdf

THOUSANDS OF YEARS OF TECHNICAL DEBT

➤ Where do you start when you want to pay it back?

CODESCENE
It’s a “movie” rather than a “snapshot”

… static analysis will never be able to tell you if that excess code
complexity actually matters – just because a piece of code is complex
doesn’t mean it’s a problem.
CodeScene identifies and prioritizes technical debt based on how the
organization works with the code
— How CodeScene Differs From Traditional Code Analysis Tools

+ Time aspect
+Organization & people

https://www.empear.com/blog/code-analysis-tool/

HOTSPOTS
Return On Investment

HOT-WHAT?

A hotspot is a complicated code that you have to work with often.

ReactJS

➤ In general, process measures based on the change history are more useful in predicting fault
rates than product metrics of the code: For instance, the number of times code has been
changed is a better indication of how many faults it will contain than is its length.

➤ We also compare the fault rates of code of various ages, finding that if a module is, on the
average, a year older than an otherwise similar module, the older module will have
roughly a third fewer faults. Our most successful model measures the fault potential of
a module as the sum of contributions from all of the times the module has been changed,
with large, recent changes receiving the most weight

HOTSPOTS ARE ALSO COMMON SOURCES OF BUGS

WORRISOME TRENDS

X-RAYS
Deep dive

X-RAY
➤ We’ve identified a problematic

file but it’s still huge!

➤ Let’s X-Ray it to find the most
problematic functions.

X-RAY
-
CHANGE
COUPLING

LEGACY CODE
And why technical debt isn’t just technical

LEGACY CODE

➤ Legacy code is typically used to describe the code that:

➤ lacks in quality (relative perspective)

➤ we didn’t write ourselves

HOW QUICKLY CAN YOU TURN YOUR CODEBASE INTO LEGACY CODE?

➤ (Off-boarding)

AFTER THEY LEAVE …

ON CODE REVIEWS
… and what to focus on

CODESCENE DELTA ANALYSIS (JENKINS)

PR COMMENTS

AND MORE
Always keep exploring

THERE’S MUCH MORE IN CODESCENE

➤ Change coupling

➤ Microservices

➤ Shotgun surgery

➤ Team conflicts

➤ Technical sprawl

➤ Proactive warnings

➤ Retrospectives

➤ Delivery Performance

➤ Branch Analyses

TO CONCLUDE…
➤ Technical debt is a real

problem regardless of
programming language

➤ There’s a huge amount of
useful information stored in
your version control system

➤ Ultimately, you need to rely on
human expertise

➤ Support your developer’s
judgment and experience with
data to get the highest ROI

RESOURCES
Where to learn more

➤ codescene.io

➤ codescene.io/showcase (React, ASP.NET, Rails, …)

➤ CodeScene blog: https://www.empear.com/blog/

➤ How CodeScene Differs From Traditional Code Analysis Tools

➤ Adam Tornhill - Talk Session: Prioritizing Technical Debt as if
Time and Money Matters

➤ Software Design X-Rays (the book)

➤ Predicting Fault Incidence Using Software Change History

➤ Simple Made Easy

➤ Elements of Clojure

http://codescene.io
https://codescene.io/showcase
http://ASP.NET
https://www.empear.com/blog/
https://www.empear.com/blog/code-analysis-tool/
https://www.youtube.com/watch?v=KV75YcFoWTo&feature=youtu.be&t=1215
https://www.youtube.com/watch?v=KV75YcFoWTo&feature=youtu.be&t=1215
https://pragprog.com/book/atevol/software-design-x-rays
https://www.researchgate.net/publication/3188092_Predicting_Fault_Incidence_Using_Software_Change_History
https://www.infoq.com/presentations/Simple-Made-Easy/
https://leanpub.com/elementsofclojure

???

APPENDINX
Keep Fun

ALAN PERLIS
I think that it's extraordinarily important that we in computer science
keep fun in computing. When it started out, it was an awful lot of fun. Of
course, the paying customers got shafted every now and then, and after a
while we began to take their complaints seriously. We began to feel as if we
really were responsible for the successful, error-free perfect use of
these machines. I don't think we are. I think we're responsible for
stretching them, setting them off in new directions, and keeping fun in the
house. I hope the field of computer science never loses its sense of fun.
Above all, I hope we don't become missionaries. Don't feel as if you're
Bible salesmen. The world has too many of those already. What you know
about computing other people will learn. Don't feel as if the key to successful
computing is only in your hands. What's in your hands, I think and hope, is
intelligence: the ability to see the machine as more than when you were first
led up to it, that you can make it more.
• Quoted in The Structure and Interpretation of Computer Programs by Hal

Abelson, Gerald Jay Sussman and Julie Sussman (McGraw-Hill, 2nd
edition, 1996)

WHY CODE-SCENE?

